137 research outputs found

    The probability of non-confluent systems

    Get PDF
    We show how to provide a structure of probability space to the set of execution traces on a non-confluent abstract rewrite system, by defining a variant of a Lebesgue measure on the space of traces. Then, we show how to use this probability space to transform a non-deterministic calculus into a probabilistic one. We use as example Lambda+, a recently introduced calculus defined through type isomorphisms.Comment: In Proceedings DCM 2013, arXiv:1403.768

    Proof Normalisation in a Logic Identifying Isomorphic Propositions

    Get PDF
    We define a fragment of propositional logic where isomorphic propositions, such as A∧BA\land B and B∧AB\land A, or A⇒(B∧C)A\Rightarrow (B\land C) and (A⇒B)∧(A⇒C)(A\Rightarrow B)\land(A\Rightarrow C) are identified. We define System I, a proof language for this logic, and prove its normalisation and consistency

    A Quick Overview on the Quantum Control Approach to the Lambda Calculus

    Get PDF
    In this short overview, we start with the basics of quantum computing, explaining the difference between the quantum and the classical control paradigms. We give an overview of the quantum control line of research within the lambda calculus, ranging from untyped calculi up to categorical and realisability models. This is a summary of the last 10+ years of research in this area, starting from Arrighi and Dowek's seminal work until today.Comment: In Proceedings LSFA 2021, arXiv:2204.0341

    The Vectorial λ\lambda-Calculus

    Full text link
    We describe a type system for the linear-algebraic λ\lambda-calculus. The type system accounts for the linear-algebraic aspects of this extension of λ\lambda-calculus: it is able to statically describe the linear combinations of terms that will be obtained when reducing the programs. This gives rise to an original type theory where types, in the same way as terms, can be superposed into linear combinations. We prove that the resulting typed λ\lambda-calculus is strongly normalising and features weak subject reduction. Finally, we show how to naturally encode matrices and vectors in this typed calculus.Comment: Long and corrected version of arXiv:1012.4032 (EPTCS 88:1-15), to appear in Information and Computatio

    Two linearities for quantum computing in the lambda calculus

    Get PDF
    We propose a way to unify two approaches of non-cloning in quantum lambda-calculi: logical and algebraic linearities. The first approach is to forbid duplicating variables, while the second is to consider all lambda-terms as algebraic-linear functions. We illustrate this idea by defining a quantum extension of first-order simply-typed lambda-calculus, where the type is linear on superposition, while allows cloning base vectors. In addition, we provide an interpretation of the calculus where superposed types are interpreted as vector spaces and non-superposed types as their basis.Comment: Long journal version of TPNC'17 paper (doi:10.1007/978-3-319-71069-3_22) extended with third author's "Licenciatura"'s thesi

    Confluence in Probabilistic Rewriting

    Get PDF
    Driven by the interest of reasoning about probabilistic programming languages, we set out to study a notion of uniqueness of normal forms for them. To provide a tractable proof method for it, we define a property of distribution confluence which is shown to imply the desired uniqueness (even for infinite sequences of reduction) and further properties. We then carry over several criteria from the classical case, such as Newman's lemma, to simplify proving confluence in concrete languages. Using these criteria, we obtain simple proofs of confluence for λ1, an affine probabilistic λ-calculus, and for Q*, a quantum programming language for which a related property has already been proven in the literature.Fil: Díaz Caro, Alejandro. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaFil: Martínez, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentin

    A Concrete Categorical Semantics of Lambda-S

    Get PDF
    Lambda-S is an extension to first-order lambda calculus unifying two approaches of non-cloning in quantum lambda-calculi. One is to forbid duplication of variables, while the other is to consider all lambda-terms as algebraic linear functions. The type system of Lambda-S have a constructor S such that a type A is considered as the base of a vector space while S(A) is its span. A first semantics of this calculus have been given when first presented, with such an interpretation: superposed types are interpreted as vectors spaces while non-superposed types as their basis. In this paper we give a concrete categorical semantics of Lambda-S, showing that S is interpreted as the composition of two functors in an adjunction relation between the category of sets and the category of vector spaces over C. The right adjoint is a forgetful functor U, which is hidden in the language, and plays a central role in the computational reasoning.Fil: Díaz Caro, Alejandro. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Malherbe, Octavio. Universidad de la República; Urugua

    A categorical construction for the computational definition of vector spaces

    Get PDF
    Lambda-S is an extension to first-order lambda calculus unifying two approaches of non-cloning in quantum lambda-calculi. One is to forbid duplication of variables, while the other is to consider all lambda-terms as algebraic linear functions. The type system of Lambda-S has a constructor S such that a type A is considered as the base of a vector space while S(A) is its span. Lambda-S can also be seen as a language for the computational manipulation of vector spaces: The vector spaces axioms are given as a rewrite system, describing the computational steps to be performed. In this paper we give an abstract categorical semantics of Lambda-S∗ (a fragment of Lambda-S), showing that S can be interpreted as the composition of two functors in an adjunction relation between a Cartesian category and an additive symmetric monoidal category. The right adjoint is a forgetful functor U, which is hidden in the language, and plays a central role in the computational reasoning.Fil: Díaz Caro, Alejandro. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Malherbe, Octavio. Universidad de la Republica. Facultad de Ingeniería; Urugua

    Classically Time-Controlled Quantum Automata: Definition and Properties

    Full text link
    In this paper we introduce classically time-controlled quantum automata or CTQA, which is a reasonable modification of Moore-Crutchfield quantum finite automata that uses time-dependent evolution and a "scheduler" defining how long each Hamiltonian will run. Surprisingly enough, time-dependent evolution provides a significant change in the computational power of quantum automata with respect to a discrete quantum model. Indeed, we show that if a scheduler is not computationally restricted, then a CTQA can decide the Halting problem. In order to unearth the computational capabilities of CTQAs we study the case of a computationally restricted scheduler. In particular we showed that depending on the type of restriction imposed on the scheduler, a CTQA can (i) recognize non-regular languages with cut-point, even in the presence of Karp-Lipton advice, and (ii) recognize non-regular languages with bounded-error. Furthermore, we study the closure of concatenation and union of languages by introducing a new model of Moore-Crutchfield quantum finite automata with a rotating tape head. CTQA presents itself as a new model of computation that provides a different approach to a formal study of "classical control, quantum data" schemes in quantum computing.Comment: Long revisited version of LNCS 11324:266-278, 2018 (TPNC 2018
    • …
    corecore